Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands
نویسندگان
چکیده
The structure-property relationship study of a series of cationic Ir(III) complexes in the form of [Ir(C^N)2(dtBubpy)]PF6 [where dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine and C^N = cyclometallating ligand bearing an electron-withdrawing group (EWG) at C4 of the phenyl substituent, i.e., -CF3 (1), -OCF3 (2), -SCF3 (3), -SO2CF3 (4)] has been investigated. The physical and optoelectronic properties of the four complexes were comprehensively characterized, including by X-ray diffraction analysis. All the complexes exhibit quasireversible dtBubpy-based reductions from -1.29 to -1.34 V (vs SCE). The oxidation processes are likewise quasireversible (metal + C^N ligand) and are between 1.54 and 1.72 V (vs SCE). The relative oxidation potentials follow a general trend associated with the Hammett parameter (σ) of the EWGs. Surprisingly, complex 4 bearing the strongest EWG does not adhere to the expected Hammett behavior and was found to exhibit red-shifted absorption and emission maxima. Nevertheless, the concept of introducing EWGs was found to be generally useful in blue-shifting the emission maxima of the complexes (λem = 484-545 nm) compared to that of the prototype complex [Ir(ppy)2(dtBubpy)]PF6 (where ppy = 2-phenylpyridinato) (λem = 591 nm). The complexes were found to be bright emitters in solution at room temperature (ΦPL = 45-66%) with microsecond excited-state lifetimes (τe = 1.14-4.28 μs). The photophysical properties along with density functional theory (DFT) calculations suggest that the emission of these complexes originates from mixed contributions from ligand-centered (LC) transitions and mixed metal-to-ligand and ligand-to-ligand charge transfer (LLCT/MLCT) transitions, depending on the EWG. In complexes 1, 3, and 4 the 3LC character is prominent over the mixed 3CT character, while in complex 2, the mixed 3CT character is much more pronounced, as demonstrated by DFT calculations and the observed positive solvatochromism effect. Due to the quasireversible nature of the oxidation and reduction waves, fabrication of light-emitting electrochemical cells (LEECs) using these complexes as emitters was possible with the LEECs showing moderate efficiencies.
منابع مشابه
Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand
The synthesis, characterization and evaluation in solid-state devices of a series of 8 cationic iridium complexes bearing different numbers of methoxy groups on the cyclometallating ligands are reported. The optoelectronic characterization showed a dramatic red shift in the absorption and the emission and a reduction of the electrochemical gap of the complexes when a methoxy group was introduce...
متن کاملCationic iridium(III) complexes bearing ancillary 2,5-dipyridyl(pyrazine) (2,5-dpp) and 2,2':5',2''-terpyridine (2,5-tpy) ligands: synthesis, optoelectronic characterization and light-emitting electrochemical cells.
Four cationic iridium(III) complexes of the form [Ir(C^N)2(N^N)](+) bearing either a 2,5-dipyridylpyrazine (2,5-dpp) or a 2,2':5',2''-terpyridine (2,5-tpy) ancillary ligand and either 2-phenylpyridine (ppy) or a 2-(2,4-difluorophenyl)-5-methylpyridine (dFMeppy) cyclometalating ligands were synthesized. The optoelectronic properties of all complexes have been fully characterized by UV-visible ab...
متن کاملBlue-green emitting cationic iridium complexes with 1,3,4-oxadiazole cyclometallating ligands: synthesis, photophysical and electrochemical properties, theoretical investigation and electroluminescent devices.
Two cationic iridium complexes, namely [Ir(dph-oxd)2(bpy)]PF6 (1) and [Ir(dph-oxd)2(pzpy)]PF6 (2), using 2,5-diphenyl-1,3,4-oxadiazole (dph-oxd) as the cyclometallating ligand and 2,2'-bipyridine (bpy) or 2-(1H-pyrazol-1-yl)pyridine (pzpy) as the ancillary ligands, have been synthesized, and their photophysical and electrochemical properties have been comprehensively investigated. In solution, ...
متن کاملSynthesis, Characterization, Electrochemical and Spectroelectrochemical Properties of Ruthenium(II) Complexes Containing Phenylcyanamide Ligands and Effect of the Inner- Sphere on the Ru-NCN Chromophore
[Ru(terpy)(bpy)(L)]PF6 complexes, where terpy is 2,2΄:6′,2″– terpyridine, bpy is 2,2΄ - bipyridine and L is monoanions of 4 - bromophenylcyanamide (4 - Brpcyd), 4-methoxyphenylcyanamide (4 - MeOPcyd), 2, 4 - dibromophenylcyanamide (2,4 - Br2pcyd), 2,4-dimethylphenylcyanamide (2,4 - Me2pcyd), 2 - methylphenylcyanamide (2 ...
متن کاملBis-cyclometalated iridium complexes with electronically modified aryl isocyanide ancillary ligands.
In this work we report a study on the effect of systematic ancillary ligand modifications on electrochemical and photophysical properties of cationic biscyclometalated bis(arylisocyanide)iridium(iii) complexes. Nine new Ir(iii) complexes were synthesized using three different cyclometalating (C^N) ligands (2,4-difluorophenylpyridine (F2ppy), 2-benzothienylpyridine (btp), and 2-phenylbenzothiazo...
متن کامل